The full name you provided is a bit of a mouthful, but it describes a chemical compound that is often referred to by its shorter name: **N-acetyl-L-cysteine (NAC)**.
**What is NAC?**
NAC is a naturally occurring amino acid derivative. It's a derivative of the amino acid L-cysteine, meaning it's essentially L-cysteine with an acetyl group attached.
**Why is it important for research?**
NAC has a variety of potential therapeutic benefits and is being studied for its use in various research areas:
* **Antioxidant:** NAC is a potent antioxidant. It helps protect cells from damage caused by free radicals, which are unstable molecules that can damage cell structures. This makes it potentially useful for treating conditions like cardiovascular disease, cancer, and neurodegenerative diseases.
* **Mucolytic:** NAC helps to break down mucus, making it easier to clear from the lungs. This makes it useful for treating conditions like chronic obstructive pulmonary disease (COPD) and cystic fibrosis.
* **Hepatoprotective:** NAC has been shown to protect the liver from damage caused by toxins, drugs, and alcohol.
* **Neuroprotective:** NAC may help protect the brain from damage caused by stroke, traumatic brain injury, and Alzheimer's disease.
* **Addiction treatment:** NAC is being studied as a potential treatment for drug addiction, particularly for opioid addiction.
**Current research:**
Current research on NAC is focused on its potential for:
* **Treating COVID-19:** Some studies suggest that NAC may help to reduce the severity of COVID-19.
* **Improving chemotherapy efficacy:** NAC might be able to enhance the effectiveness of certain chemotherapy drugs.
* **Preventing cognitive decline:** There is research exploring the potential of NAC for slowing or preventing cognitive decline in conditions like Alzheimer's disease.
**Overall:**
NAC is a promising molecule with a wide range of potential therapeutic uses. Ongoing research is exploring its effects on various conditions, and it could become a significant part of future medical treatments.
ID Source | ID |
---|---|
PubMed CID | 4832471 |
CHEMBL ID | 1393596 |
CHEBI ID | 112814 |
Synonym |
---|
o-ethyl [2-[(4,5-dimethyl-1,3-thiazol-2-yl)amino]-2-oxoethyl]sulfanylmethanethioate |
smr000344440 |
MLS000771305 , |
CHEBI:112814 |
HMS2772C18 |
[[2-[(4,5-dimethyl-2-thiazolyl)amino]-2-oxoethyl]thio]methanethioic acid o-ethyl ester |
bdbm72613 |
cid_4832471 |
o-ethyl [2-[(4,5-dimethyl-1,3-thiazol-2-yl)amino]-2-oxidanylidene-ethyl]sulfanylmethanethioate |
[[2-[(4,5-dimethylthiazol-2-yl)amino]-2-keto-ethyl]thio]methanethioic acid o-ethyl ester |
CHEMBL1393596 |
Q27193273 |
Z57038433 |
Class | Description |
---|---|
thiazoles | An azole in which the five-membered heterocyclic aromatic skeleton contains a N atom and one S atom. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 10.0000 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Nrf2 | Homo sapiens (human) | Potency | 22.3872 | 0.0920 | 8.2222 | 23.1093 | AID624171 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 28.1838 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 56.2341 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
TDP1 protein | Homo sapiens (human) | Potency | 18.4782 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 14.1254 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
Smad3 | Homo sapiens (human) | Potency | 12.5893 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 12.5893 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
IDH1 | Homo sapiens (human) | Potency | 20.5962 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) | Homo sapiens (human) | Potency | 14.1254 | 0.0165 | 25.3078 | 41.3999 | AID602332 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 89.1251 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 39.8107 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 0.0082 | 5.8048 | 36.1306 | 65.1308 | AID540253 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 16.8336 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
snurportin-1 | Homo sapiens (human) | Potency | 0.0082 | 5.8048 | 36.1306 | 65.1308 | AID540253 |
GTP-binding nuclear protein Ran isoform 1 | Homo sapiens (human) | Potency | 0.0082 | 5.8048 | 16.9962 | 25.9290 | AID540253 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 25.1189 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
urokinase-type plasminogen activator precursor | Mus musculus (house mouse) | Potency | 8.9125 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
plasminogen precursor | Mus musculus (house mouse) | Potency | 8.9125 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
urokinase plasminogen activator surface receptor precursor | Mus musculus (house mouse) | Potency | 8.9125 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 24.0353 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 18.3564 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
histone acetyltransferase KAT2A isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 0.2512 | 15.8432 | 39.8107 | AID504327 |
DNA dC->dU-editing enzyme APOBEC-3G isoform 1 | Homo sapiens (human) | Potency | 35.4813 | 0.0580 | 10.6949 | 26.6086 | AID602310 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 22.3872 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Hsf1 protein | Mus musculus (house mouse) | EC50 (µMol) | 7.8060 | 0.1600 | 24.4900 | 236.5000 | AID435004 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Hsf1 protein | Mus musculus (house mouse) | AbsAC40_uM | 12.3900 | 1.2400 | 12.4600 | 25.2000 | AID602296 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |